Small-scale universality in fluid turbulence.
نویسندگان
چکیده
Turbulent flows in nature and technology possess a range of scales. The largest scales carry the memory of the physical system in which a flow is embedded. One challenge is to unravel the universal statistical properties that all turbulent flows share despite their different large-scale driving mechanisms or their particular flow geometries. In the present work, we study three turbulent flows of systematically increasing complexity. These are homogeneous and isotropic turbulence in a periodic box, turbulent shear flow between two parallel walls, and thermal convection in a closed cylindrical container. They are computed by highly resolved direct numerical simulations of the governing dynamical equations. We use these simulation data to establish two fundamental results: (i) at Reynolds numbers Re ∼ 10(2) the fluctuations of the velocity derivatives pass through a transition from nearly Gaussian (or slightly sub-Gaussian) to intermittent behavior that is characteristic of fully developed high Reynolds number turbulence, and (ii) beyond the transition point, the statistics of the rate of energy dissipation in all three flows obey the same Reynolds number power laws derived for homogeneous turbulence. These results allow us to claim universality of small scales even at low Reynolds numbers. Our results shed new light on the notion of when the turbulence is fully developed at the small scales without relying on the existence of an extended inertial range.
منابع مشابه
Two Point Correlations Between Velocity Sums and Differences, and Their Implications for Large-Small Scale Correlations in Fluid Turbulence
Recent work by Blum, et al has shown the existence of a dependence between large and small scale statistics in measurements of isotropic fluid turbulence, violating the hypothesized universality of small scales in fluid turbulence. The authors have argued that that non-ideal effects, such as inhomogeneity and large scale intermittency are the most likely causes of these dependences. Recent stud...
متن کاملTurbulence in nature and in the laboratory.
Fluid turbulence has attracted the attention of physicists, mathematicians, and engineers for over 100 years, yet it remains an unsolved problem. The reasons for the difficulties are outlined and recent advances in describing its small-scale statistical structure are described. Contrary to traditional notions, new experimental evidence indicates that the small scales are anisotropic, reflecting...
متن کاملEcological collapse and the emergence of traveling waves at the onset of shear turbulence
The transition to turbulence exhibits remarkable spatio-temporal behavior that continues to defy detailed understanding. Near the onset to turbulence in pipes, transient turbulent regions decay either directly or, at higher Reynolds numbers through splitting, with characteristic time-scales that exhibit a super-exponential dependence on Reynolds number. Here we report numerical simulations of t...
متن کاملThe Phenomenology of Small-scale Turbulence
Small-scale turbulence has been an area of especially active research in the recent past, and several useful research directions have been pursued. Here, we selectively review this work. The emphasis is on scaling phenomenology and kinematics of small-scale structure. After providing a brief introduction to the classical notions of universality due to Kolmogorov and others, we survey the existi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 30 شماره
صفحات -
تاریخ انتشار 2014